
General Feedback for Deliverable 1
There will always be assumptions, no matter how general or obvious they might be.
For example, you might assume that the data is being read from 
the keyboard and the results printed to the screen.
Also, because of the use of scanf() you will be forced to assume that the value being
entered is of the correct data type.
You should be aware in general that, within the limitations of scanf(), your programs
should be as robust as possible. However, some students may get
around this by specifying it as an assumption, for example Assume that the money
entered will be positive.
This is fine as an assumption although it may be regarded as a minor (but
recognised) weakness in the actual algorithm. 

Learning Attributes section:
Basic Comprehension and analysis Skills - What are valid assumptions?.

Specific Feedback from Marker for deliverable 1
Good Day Jin.
Feedback for you for ass1.

Really nice thinking about your assumptions, Jin. ®

General Feedback for Deliverable 2
The algorithm must be complete, consistent and unambiguous. The more relaxed
nature of structured English makes it too easy to produce algorithms
that dont meet these requirements so become more precise. In particular : 
     Read in the user's input
     Convert to lower case
     Add up the numbers
     Validate the data

Wherever possible in algorithms, students should be specifying names to identify
the data they are working with. 
So the first step is slightly ambiguous in the sense that no name as been assigned
to the data read in. 
The second and third are worse because they dont specify what is being
converted/which numbers are being added up - this sort of vagueness becomes
much harder to allow to exist if a name has been specified for the data being
processed. 
The last line is the worst of all because it now refers to the data which may or
may not be the input that was read in. However, even if it did refer to a specific
piece of data it is clearly ambiguous and incomplete in that it doesn't even suggest
how the data should be validated. At this point it is no longer an algorithm

Student Number 33170193 Student Name Chong:Jin Cherng Mark: TBA

Feedback for Deliverable

ICT159 Ass1 2018.1

Did not
achieve

outcomes at all.

Sub-standard
achievement
of outcomes.

Flawed
achievement
of outcomes.

Half
achieved

the outcomes.

Competent
achievement
of outcomes.

Superior
achievement
of outcomes.

Outstanding
achievement
of outcomes.

Time taken to
receive this feedback:

2 days, 21 hrs, 47 mns.

1

Assumptions:

2

Algorithm: 
Your algorithm should be written in a uniform fashion (pseudo-code or a similar style).
Your algorithm should be presented at an appropriate level of detail, sufficient to be easily
implemented.

Algorithm: Correctness 

http://www.cs2.curtin.edu.au/~raytrace/marking/Outcomes.html
http://www.cs2.curtin.edu.au/~raytrace/marking/Outcomes.html
http://www.cs2.curtin.edu.au/~raytrace/marking/Outcomes.html
http://www.cs2.curtin.edu.au/~raytrace/marking/Outcomes.html
http://www.cs2.curtin.edu.au/~raytrace/marking/Outcomes.html
http://www.cs2.curtin.edu.au/~raytrace/marking/Outcomes.html
http://www.cs2.curtin.edu.au/~raytrace/marking/Outcomes.html
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS


but still english!! 

Learning Attributes section:
Basic Algorithm Development Skills .

Specific Feedback from Marker for deliverable 2
In function ChkMoney, what is the default value of chkValid?????

You do not show that the parameters of function Change are pass by
reference, so how do they
change the parameter values?

Your function parameter list is long and it is easy to incorrectly pass
in the wrong parameter
in the wrong place (ie the cents vs the dollars).

Q2: You do not do error checking of cents being greater than 95 or
less than 5.

Look at this:
If(gtMoney < 0) Then
Output "Warning!!! You've entered a negative value! Not only does it
not make sense but the program
may give you wrong error."
EndIf
perhaps "wrong answer" would be better wording.

®

®

General Feedback for Deliverable 3
Other things to be careful of include: 
Consistent use of variables etc. That is, identifying the name of particular value
and using this name in each part of the algorithm.
Declare variables in the algorithm just as they need to be with the code.
Use descriptive variable names and in lower case.
Use consistent and proper indenting to show what part of the algorithm is part of
which structure - this is critical!
The indentation style that is used must be that taught in the lecture notes.
Consistency between the high level algorithm and the low-level (where
appropriate). 
A clean flow of logic through the algorithm such that, wherever possible,
structures have one entry point and one exit point.
No use of effective go to statements, either explicit or implicit.
The algorithm must use the three structures (sequence, selection, iteration). 
The same applies to the use of break and continue statements in loops, and these
should be avoided wherever possible.
We want an algorithm which aims to be as simple as possible while properly
solving the problem -- that is, no unnecessary complexity!

Have a look at http://xkcd.com/1513/ for some
comments on style!

Learning Attributes section:
Adopting and following professional standards

3

4 Algorithm: Correctness - Question 1 

5 Algorithm: Correctness - Question 2 

6

Algorithm: Style (indentation, variable names, etc) 

http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS
http://xkcd.com/1513/


®

®

General Feedback for Deliverable 4
You algorithm must be a correct and efficient solution to the problem.

Learning Attributes section:
Basic Computing Analysis skills

Specific Feedback from Marker for deliverable 4
Can you think how you might remove the issue of the long parameter

list?

®

®

General Feedback for Deliverable 5
The proper testing of all appropriate boundary conditions (i.e., before, on and
immediately after the boundary) and also for special cases
(e.g., negatives, zero values etc.) 

Learning Attributes section:
Problem Analysis, Testing and Reporting.

Specific Feedback from Marker for deliverable 5
Your testing is extensive, but there are many test values that contribute

little to the testing
output - they duplicate existing tests. Jin: what other tests would show
the problems in this
algorithm?

®

®

General Feedback for Deliverable 6
You should have desk-checked the test data against the algorithm to ensure that
the results are actually correct for your algorithm.

Learning Attributes section:

7 Algorithm: Style - Question 1 

8 Algorithm: Style - Question 2 

9

Algorithm: Efficiency 
You algorithm must be a correct and efficient solution to the problem.

10 Algorithm: Efficiency - Question 1 

11 Algorithm: Efficiency - Question 2 

12 Test data and Test Table: 

13

Test data and Test Table: Selection of inputs 

14 Test data and Test Table: Selection of inputs - Question 1 

15 Test data and Test Table: Selection of inputs - Question 2 

16

Test data and Test Table: Desk Checking 

http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS


Learning Attributes section:
Problem Analysis, Testing and Reporting.

®

®

General Feedback for Deliverable 7
Indentation is an issue that has been discussed all semester and it is a major part
of good program style. 
A well-indented program is easier to understand and analyse, particularly for a
person who didn't write it. So someone should be able to look at the program
and see pretty easily its general structure. If this is true then the indentation is
probably at least reasonable! 
Obviously there are different styles of indentation but students are required to use
the style that is taught in lecture notes etc.
The biggest problem with indentation seems to be with if statements where the
true clause and false clause MUST line up.
An indentation style where the else and the following if are on the same line is
not good. 

Learning Attributes section:
Adopting and following professional standards

Specific Feedback from Marker for deliverable 7
Use consistent indentation for the code.

®

®

General Feedback for Deliverable 8
Does the code does match the algorithm? It is not enough to simply produce a
semi-working algorithm and then write a program from this which then needs
extensive work to get running properly. If the two do not match in any significant
way then this is not good quality.

Learning Attributes section:
Basic Computing Coding skills

®

®

17 Test data and Test Table: Desk Checking - Question 1 

18 Test data and Test Table: Desk Checking - Question 2 

19
Program Code: 
Remember to lay your code out neatly, use meaningful names for your variables and
comment your code where appropriate.

20

Program Code: Indentation and Layout

21 Program Code: Indentation and Layout - Question 1 

22 Program Code: Indentation and Layout - Question 2 

23

Program Code: Quality 

24 Program Code: Quality - Question 1 

25 Program Code: Quality - Question 2 

http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS


General Feedback for Deliverable 9
The stylistic conventions relating to the code are those that have been given
throughout the semester during lectures.
Constants should be in all upper case (and ideally used wherever appropriate), and
variables should be in lower case.
Function names should in general be mixed case starting with a capital letter for
each word. 

Identifier names should be concise, descriptive and self-explanatory wherever
possible, although throw-away temporary variables are permitted.
Comments should be used where appropriate but not over-used. Commenting
every line is counter-productive and the comments should be clearly
thought out in order to convey important information to an informed reader of the
code. If a piece of code doesn't really require a comment since
it is self-explanatory then that is OK, but if a comment should be there to explain
something and is not, then that is not OK. 
It is also important that comments do not interfere with the overall indentation
structure, so the comment should be lined up with the line of code it
corresponds to.

Have a look at http://xkcd.com/1513/ for some
comments on style!

Learning Attributes section:
Basic Computing Maintenance skills

Specific Feedback from Marker for deliverable 9
Add small comments around the C-code segments to aid in readability.

®

®

®
YES NO

General Feedback for Deliverable 10
A soft copy (on CD) of your source code in the root folder.
Did the code compile and run from this source ?

Learning Attributes section:
Basic Computing Development skills

®

®

26

Program Code: Other Code Style 

27 Program Code: Other Code Style - Question 1 

28 Program Code: Other Code Style - Question 2 

29 Code on disk?:
It is expected that the code is on the disk as required.

30

Code on disk: compiling and running :

31 Code on disk: compiling and running - Question 1 

32 Code on disk: compiling and running - Question 2 

Code on disk: correctness:

http://xkcd.com/1513/
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS


General Feedback for Deliverable 11
Does the program work correctly given the various inputs? Is it partially
working? Is it a logic error or a minor compilation problem?
How does the program behave in relation to the assumptions made by the you?
For example, if the program is unable to deal with input of an incorrect type and
this is not clearly stated as a limitation in the assumptions then you will be
penalised for this section. 

Learning Attributes section:
Code Analysis and Reporting.

Specific Feedback from Marker for deliverable 11
I found it difficult to see how much change as given because

everything is on one long line!

®

®

General Feedback for Deliverable 12
This should confirm that the program implements the algorithm correctly and
indicate on the test table that this is valid.

Learning Attributes section:
Code Analysis, Testing and Reporting.

Specific Feedback from Marker for deliverable 12
Extensive testing! ®

General Feedback for Deliverable 13
Self assessment of how successful you were in achieving the requirements and a
discussion of any problems you encountered.
Did you give a brief rundown of how you went about the process? 
Or does this include a brief discussion on different possible approaches and why they
ultimately chose what they did?
Did you show your understanding of the problems you had as you did this
assignment?

Learning Attributes section:
Life Long Learning.

Specific Feedback from Marker for deliverable 13
Jin, excellent reflection!

Think about this assessment feedback as well. ®

33

34 Code on disk: correctness - Question 1 

35 Code on disk: correctness - Question 2 

36

Program testing outputs:

37

Self Assessment:

Comments

General Feedback to all students

http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS
http://www.cs2.curtin.edu.au/units/ict159/assessment//#COMMENTS


Some students' algorithms were much too imprecise. By this stage - week 8 -
you should be able to create precise pseudo-code that does not have ambiguous
english sentences in it. For example, what does:
 read the input
mean? Is it just a vague description, does it mean to read the input into a variable
called input, or is the input just put somewhere else "magically?

Some students should have used constants to represent the value of the denominations
not variables. The value of a 50c coin is fixed and constant - it does not vary.
 CONSTANT INTEGER fiftyCentCoin = 50
 CONSTANT INTEGER twentyCentCoin = 20
  etc
and then pass these constants into your modules.

Change existing code to meet new requirements. Don't keep old and inappropriate variable 
names from previous bits of example code.

Some indentation of the nested if-then-else code was not what is required by the
lecture notes. Similarly for do-while loops, etc.

The use of braces {} are for C, not necessarily for pseudo-code.
And algorithms would not have scanf "%lf" type statements.

Some students had redundant checks in their coin testing code.

What about negative amounts of change?

Some students did not test their algorithm and then their code properly.

Follow what the assignment specification says! Don't arbitrarily choose to do
what might be convenient or easier for you.... that is a good way to lose marks.
The specification said:
 Note that for this problem the principle of code reuse is particularly important and
 a significant number of marks are allocated to this.  You should attempt to design your 
 solution such that it consists of a relatively small number of functions that are as 
 general in design as possible and you should have one function in particular that can 
 be reused (called repeatedly) in order to solve the majority of the problem.  
 If you find that you have developed a large number of functions which each perform a 
 similar task (or have a lot of repeated code) then attempt to analyse your design 
 to generalise the logic so that it may be reused.
Many students just ignored this part of the assignment!
The simplest way to solve it is probably using integer division and then subtract away the 
result each time (or use modulus to get the remainder). This should then be abstracted into 
a single module which takes the change amount and the coin denomination and calculates how 
many of that coin are required. Since there are four different types of coins this module 
can be called four times with different inputs, namely each denomination of coin.  
This is a great abstraction of the problem, particularly since it allows this function to 
be re-used for the dollar amounts when doing part (b). 

A good high level algorithm should probably be something like:
 Get Amount
 Calculate Change
 Output Results

However, some students may have separate modules for each denomination of coins and usually
this will mean that these modules will output the results as they go.  
Outputting of results from within the same function that does the calculation is not good 
as this indicates low cohesion. And having many functions which solve the same problem 
means that you have not properly considered how to generalise this code in order to maximise its reuse.

It is acceptable to either print out the results as you go (i.e., from the main function when 
returned from their calculating function) or to have a separate module for printing 
(although this may be a bit messy as there will be lots of parameters). 
Best is to make a general printing module and simply call this to do the work.

One thing to be careful about in Q2 is the passing of data between functions. 
Variables should only be passed when this is required and then only passed by reference 
when the variable needs to be changed. 
Some chose to use return values in preference to pass by reference and this is fine.
A good rule of thumb is that if only one value is returned from a function, use return
rather than a single pass by reference.

No Specific Outcomes file: specific_outcomes.html

Contact 33170193 Webmaster

mailto:raytrace@smiliemail.org

	Feedback for Deliverable ICT159 Ass1 2018.1
	General Feedback to all students


